Tetrahedron 67, 7316-7320 (2011)

 DOI:10.1016/j.tet.2011.07.042 

Isomerization barriers in bis(4H-thiopyran) and in bothioxanthenes

The inversion and rotation mechanisms for the isomerization of Feringa’s bithioxanthenes existing in two conformations, up/up and up/down, have been calculated at the B3LYP/6-31G(d) and B3LYP/6-311++G(d,p) levels. The inversion mechanism that maintains the double bond nature of the central bond is a classical one but the rotation mechanisms that break the double bond to form a biradical needs to explore the singlet and triplet states. To do this we have removed the four fused phenyl rings of bithioxanthene and calculated at the CASSCF and CASPT2 levels bis(4H-thiopyran) proving that B3LYP calculations yield reasonable results for the rotation barriers.