J. Phys. Chem. A 115, 13724-13731 (2011)

DOI: 10.1021/jp2094164

Structures, Energies, Bonding, and NMR Properties of Pnicogen Complexes H2XP:NXH2 (X=H, CH3, NH2, OH, F, Cl)
Ab initio calculations have been carried out in a systematic investigation of P···N pnicogen complexes H2XP:NXH2 for X ═ H, CH3, NH2, OH, F, and Cl, as well as selected complexes with different substituents X bonded to P and N. Binding energies for complexes H2XP:NXH2 range from 8 to 27 kJ mol–1 and increase to 39 kJ mol–1 for H2FP:N(CH3)H2. Equilibrium structures have a nearly linear A–P–N arrangement, with A being the atom directly bonded to P. Binding energies correlate with intermolecular N–P distances as well as with bonding parameters obtained from AIM and SAPT analyses. Complexation increases 31P chemical shieldings in complexes with binding energies greater than 19 kJ mol–1. One-bond spin–spin coupling constants 1pJ(N–P) across the pnicogen interaction exhibit a quadratic dependence on the N–P distance for complexes H2XP:NXH2, similar to the dependence of 2hJ(X–Y) on the X–Y distance for complexes with X–H···Y hydrogen bonds. However, when the mixed complexes H2XP:NX′H2 are included, the curvature of the trendline changes and the good correlation between 1pJ(N–P) and the N–P distance is lost.