J. Org. Chem. 68, 7485-7489 (2003)

DOI: 10.1021/jo035026y

Large Chiral Recognition in Hydrogen-Bonded Complexes and Proton Transfer in Pyrrolo[2,3-b]pyrrole Dimers 

The chiral recognition in the formation of hydrogen-bonded (HB) dimers of 1,6a-dihydropyrrolo[2,3-b]pyrrole derivatives as well as in their proton-transfer processes have been studied by means of ab initio calculations. The heterochiral dimers are in general the most stable ones, but amphiprotic substituents that are able to form attactive interactions with twin groups revert this tendency. Energy differences up to 4.0 kcal/mol have been found favoring the homo- or heterochiral complexes. Two possible proton-transfer processes have been studied, the concerted one and the nonconcerted one. The compresion of the systems in the transition structures produce an increase in the energetic differences when compared to the corresponding minima complexes. A Steiner−Limbach relationship has been found for the geometrical properties of the HB in the minima and transition states calculated here. The electron density and its Laplacian at the bond critical point have been found to correlate with the HB distance.