J. Phys. Chem. A 111, 2077-2083 (2007)


Weakly Bound Complexes of N2O: An ab Initio Theoretical Analysis Toward the Design of N2O Receptors

Ab initio calculations at MP2/6-311++G(2d,2p) and MP2/6-311++G(3df,3pd) computational levels have been used to analyze the interactions between nitrous oxide and a series of small and large molecules that act simultaneously as hydrogen bond donors and electron donors. The basis set superposition error (BSSE) and zero point energy (ZPE) corrected binding energies of small N2O complexes (H2O, NH3, HOOH, HOO, HONH2, HCO2H, H2CO, HCONH2, H2CNH, HC(NH)NH2, SH2, H2CS, HCSOH, HCSNH2) vary between -0.93 and -2.90 kcal/mol at MP2/6-311++G(3df,3pd) level, and for eight large complexes of N2O they vary between -2.98 and -3.37 kcal/mol at the MP2/6-311++G(2d,2p) level. The most strongly bound among small N2O complexes (HCSNH2-N2O) contains a NHââN bond, along with S f N interactions, and the most unstable (H2S-N2O) contains just S f N interactions. The electron density properties have been analyzed within the atoms in molecules (AIM) methodology. Results of the present study open a window into the nature of the interactions between N2O with other molecular moieties and open the possibility to design N2O abiotic receptors.